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ABSTRACT

The use of diffusive terms in numerical ocean models is examined relative to different coordinate systems.
The conventional model for horizontal diffusion is found to be incorrect when bottom topographical slopes
are large. A new formulation is suggested which is simpler than the conventional formulation when
transformed to a sigma coordinate system and makes it possible to model realistically both surface Ekman

and bottom boundary layers.

1. Introduction

Vertical viscosity and diffusivity related to small
turbulence scales characterized by integral macroscales
about 0.2-0.5 times the boundary layer thicknesses
are now relatively well parameterized using turbulence
closure schemes based on hypotheses of Rotta and
Kolmogorov (see, for example, Mellor and Yamada,
1982, wherein are references to a number of closure
submodels and applications). These hypotheses em-
body well-defined physical constants, directly mea-
surable in the laboratory. The constants are believed
to be sufficiently universal to cover most turbulent
flows with accuracy sufficient for most applications.

When the horizontal length scale of mean property
variation is large relative to the vertical scale, scale
analysis—leading to the turbulent boundary layer
approximation—specifically excludes the small-scale
horizontal diffusion terms in favor of the vertical
terms. The validity of the turbulent boundary layer
approximation is indisputable for most laboratory
flows documented in the literature, Furthermore, a
three-dimensional model study of New York Harbor
and Estuary has been completed (but not yet pub-
lished) wherein the horizontal grid element was 500
m. The vertical coordinate, a sigma system [Phillips,
1957], was divided into 10 levels, such that the
vertical grid size was a maximum of 6 m in the
deepest water and decreased proportionately as depth
decreased. No horizontal viscosity or diffusivity was
required. Good vertical resolution was an important
factor here. Dispersion was, in effect, explicitly mod-
eled by resolved small-scale horizontal advection fol-
lowed by vertical mixing, the so-called G. 1. Taylor
(1954) dispersion process. The correspondence be-
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tween model simulation and observed current and
salinities (an extensive dataset was available) was very
good.

It is believed that the New York Harbor experience
presages the fact that horizontal diffusion can be
eliminated in the future for smaller oceanic domains
and as computing costs continue to decrease. In
addition, the existing, eddy resolving, two- and three-
layer models [Holland, 1978] also suggest this devel-
opment, although the layer models could further
decrease their dependence on horizontal diffusion by
using finer vertical resolution and better physics for
vertical mixing, important elements for the simulation
or forecasting of the oceanic mass fields. However,
for most, larger scale, numerical applications, hori-
zontal grid elements are generally much larger than
the smallest, two-dimensionally dominant scales dic-
tated by variable bottom topography in shallow water
and the baroclinic Rossby radius of deformation in
the open ocean. These small, unresolved, mesoscale
motions require that modelers use horizontal, subgrid-
scale, diffusive terms with diffusivity coefficients, of-
tentimes much larger than the small scale, vertical
diffusivities. Thus, while the situation is improving,
many modeling applications will require horizontal
mixing for some time into the future. For example,
presuming computer storage were available, the cur-
rent cost of modeling the world ocean with 30 vertical
levels on a | km X 1 km grid for one year’s
simulation is, roughly, ten billion dollars.! Since
computer costs decrease roughly by a factor of 10

! This estimate is based on commercial rates for a Cray-1S
computer using a grid of 5 X 10° points and a time step of ~2.5
min (as dictated by numerical stability constraints).
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every ten years, it appears, therefore, that for large
domain- calculations, horizontal mixing coefficients
will be needed to fill the gap for the next 40-50 years
or more.

The purpose of this paper is to provide the correct
formulation of the horizontal mixing terms in a
sigma-coordinate system so that both surface Ekman
and bottom boundary layers can be realistically mod-
eled, even when the horizontal diffusivities are much
larger than the small-scale diffusivity. The discussion
presented here, while directed towards ocean model-
ing, is applicable to atmospheric circulation modeling
as well. However, as is appropriate to the ocean
environment, and to simplify the discussion, the
Boussinesq approximation is used here. The approx-
imation can be removed with no change in the
conclusions of the paper.

2. Horizontal and vertical mixing hypotheses and the
modeling coordinate system

Consider the three coordinate systems illustrated
in Fig. 1: coordinate system A, a conventional x, z
coordinate system; coordinate system B, a sigma
coordinate system; and coordinate system C, an or-
thogonal curvilinear system.

The 51gma coordinate system (Phillips, 1957) is
defined? as

z
x* = X, * = A == (la,b,C)

| Y H(x, )
where ¢ = 0 at the surface, z = 0 and ¢ = —1-at the
bottom, z = —H(x, y). The three-dimensional ocean

circulation model of Blumberg and Mellor (1983,
1985) is a sigma coordinate model that seems to
especially benefit from its coordinate system’s bottom
following capability in dealing with combined baro-
clinic and topographical effects and in modeling
bottom boundary layers.

The curvilinear coordinate system C is comprised

of o surfaces and surfaces orthogonal to these o .

surfaces. It is not considered a useful numerical
modeling system, but it is useful to this discussion.
Now consider the first (perhaps deceptively) simple
step in modeling mixing processes. The momentum
flux will be used in the x-component of the vector
momentum equation as an example; the results apply
to the y-component and to any scalar flux. The net
momentum flux for coordinate system A is
F, = e 9
ox ay

07,

% 2

2 Note that a more precise definition is o = (z — n)/(H + n),
where 7 is the free surface elevation, but we neglect n here to
simplify the discussion.
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where the stress components are’

‘ U v a
'rxx=2A5;, Tyx—A(ax+ U)

-52)

(3a, b, ¢)

Here K is small, O(10~2 m? s™') and can be provided
by turbulent closure schemes. On the other hand, 4
can be large, O(10°-10* m? s7!); the actual value
depends on horizontal resolution—too small and the
calculated fields are noisy, too large and resolvable
flow structures are removed. Now, at an ocean surface,
there is no problem with Eq. (3a, b)—at least in the
context of this discussion—since the stress acting on
a plane normal to the surface is 7,,. And, although
A may be much larger than K, d7,,/dz is, generally,
still much larger than the horizontal divergent terms
in Eq. (2). However, at the bottom there can be a
problem when 4 > K and the bottom slope dH/dx
or dH/dy is significantly nonzero. Consider the case
with H/dx # 0 and dH/dy = 0. The stress near the
bottom acting on a surface parallel to the bottom
and in the x-direction is 7, = 7, — TO0H/0x
= KoU/dz — 2A48H[dx3U/dx, or approximately 7,
~ (KAU/O)[1 — 2(4/K)-(0H/dx)(8/Ax)}) where the
change AU occurs over a distance 6 in the vertical
and over a distance Ax in the horizontal direction.
Suppose § = 50 m, Ax = 50 km, H/dx = —107%, 4
=10*m?s'and K= 102 m?s~'. Then r,, =~ (KAU/
8)[1 + 20]; the effective diffusivity for the bottom
boundary layer is therefore much larger than K.
Furthermore, to realistically model bottom boundary
layers this effective diffusivity should approach zero
near the bottom where the logarithmic law of the
wall prevails and this further exacerbates the problem
of using Eqgs. (3a, b).

Equations (2) and (3a, b, ¢) can be transformed
into a sigma coordinate system as in the model of
Blumberg and Mellor [1983, 1985). Making the trans-
formation, one obtains

= O 0 OH O 97y

¥ 9x* Hox 30 y*
_ 0 OH 91y, _1_9& @)
Hay d¢ H Od¢

3The full stress tensor which is axisymmetric about the z
coordinate and subject to aU,/dx, = 0 is v; = C\(dU;/0x; + 8U;/
ax;) + C(NOW/[dx; + NoW/ox;) + Cy(\oU;/oz + \0U;/dz)
+ Cid;0W/dz where \; = (A;, Ay, A;) = (0, 0, 1) is a vector normal
to the x — y plane. 3W/dx terms have been neglected in Eq. (3a,
b, ¢) according to boundary layer scale analysis. Also the vertical
divergence, dW/dz, has been neglected as is appropriate to oceans
and perhaps to the earth’s atmosphere (Williams, 1972). Alternately,
in the absence of more physics, one simply posits a constitutive
relation where C, = 0.
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FIG. 1. Schematic of three coordinate systems: (a) a conventional
X, z system; (b) a sigma system; and (c) an orthogonal curvilinear
system.

and
oU o 0H AU

Txx = [:a;r - ﬁaa] (52)

V U oo oHIV ¢ dHIU
Tyx = A . T T T T T ( b)

x* dy* Hox de H Ay ds

K oU

Tox = ;1-51—7' . (5¢)

On continental slopes it was found that the Blumberg-
Mellor model could not simulate physically reasonable
bottom boundary layers; for example, the logarithmic
velocity behavior is not obtained. The point is, of
course, that a coordinate transformation does not
change the physics of the governing equations. The
previous discussion in terms of Egs. (2) and (3a, b)
applies equally to Eqgs. (4) and (5a, b, ¢).
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To proceed towards a correct model for horizontal
diffusion, another form of Eq. (2) or Eq. (4) is
convenient. It may be verified that

I @ 14 1 dr,
F,=— (HTH)+§5)(HTX,,)+— X

H ax Hos ©

is equivalent to Eq. (4) and therefore to Eq. (2) by
letting 7,x = 7, — 0(0H/3X)1x — o(3H/dy)r. Note
that 7,, consists of terms containing 4 and is largest
near the bottom (¢ = —1). Also note that 7., 7y
and 7,, are stresses in the x-direction acting on
surfaces of constant x*, y* and ¢, respectively. (7,
is actually the shear force per unit area projected on
a z = constant plane.) If one refers to Fig. 1b, one
sees that they are natural stress definitions for use on
a small volume element, A¢HAx*Ay* in sigma co-
ordinates.

To develop a proper formulation valid near the
ocean surface and bottom, a replacement constitutive
relation for Eq. (3a, b, c) or, equivalently Equation
(5a, b, c) is needed; a relation that does not include
a component containing 4, acting on surfaces parallel
to the bottom.

By considering coordinates s and m parallel to the
bottom and » normal to the bottom, as in Fig. Ic, a
new constitutive relation in this curvilinear orthogonal
system can be written as

IO Y R
Tss = 24 as,7ms_A(as+am s> Tns Kan
(7a, b, ¢)

where now the stress components acting on the plane
parallel to both the surface and bottom contains K
and not the much larger value A. To see why this is
correct, define K = vglyx and A = v, where vg, vy
are velocity scales and I, I; corresponding length
scales. The velocity scales of both unresolved subgrid
scale, parallel motion v, and small scale turbulent,
normal motion vgx are roughly of the same order,
O(1072 m s™'). It is, however, known that scales of
motion normal to solid surfaces, /x = O(1 m) whereas,
one supposes, [, = O(Ax) = O(10°-10° m). Equation
(7a, b, c) where 4 > K is in accord with this scaling,
whereas the stress defined by Eq. (3a, b, ¢), where
also 4 » K, are not.

A difficulty with Eq. (7a, b, c) is that, when 7,
Tms> Tns are transformed without any approximations
t0 T,x, Tyx» Tax and the velocities to U and V, the
result is very complicated except at the surface, z
= 0, where they reduce to Egs. (2) and (3a, b, ¢). The
situation can be improved by taking advantage of the
fact that bottom slopes are small numbers; for ex-
ample, dH/dx = 0.1 is an upper limit of values
encountered in the ocean. If ¢, ~ sin ¢, = —0dH/
dx where ¢, is the angle between the sigma surface
and the horizontal (see Fig. 1c), it can be shown that
Tax = €OS? Gyr + COS Py SIN Purp =~ (1 — ¢, )7
+ ¢xTns =~ 75 and similarly that 7, ~ 249U/dx*.
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Thus, to very good approximation

U
=24 —
A p (8a)
and similarly
U
A( o 3—)(:) (8b)
KU
Tox = T o0 8c)

Specifically, Eq. (8c) does not contain A. Furthermore,
Eq. (6) together with Eq. (8a, b, ¢) which as shown
here is physically correct, is much simpler than Egs.
(4) and (5a, b, ¢).

A complete list of equations for momentum and
heat diffusion is contained in the Appendix. The
modeling of heat flux near the bottom also benefits
by recasting the heat flux constitutive relations.

3. Discussion

The best modeling of horizontal diffusion terms
are null terms, but if they need be included which,
presently, is almost always the case, then Eqgs. (6) and
(8) are the correct representation instead of either
Egs. (2) and (3) or, equivalently, Egs. (4) and (5). A
problem with Egs. (6) and (8) has been encountered,
however. Namely, if there is no initial motion and
temperature, salinity and density are functions of z
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with the horizontal thermal diffusivity (4z) equal to
a constant, Eq. (A2) will result in cross-slope heat
transfer followed by a baroclinically driven flow. In
spite of this, Eq. (A2) is correct physically. What is
not correct is that Ay be nonzero when there is no
motion. Another parameterization for Ay is needed
such as the grid and velocity gradient dependent
horizontal diffusivity formulation of Smagorinsky
[1963] or some other velocity dependent (and buoy-
ancy gradient dependent) relation. If 45 = constant
is to be maintained, which does make the level of
diffusiveness in a model easy to report, then a “fix”
would be to subtract out an area averaged 7(z) from
T(x, y, z) before evaluating the heat flux and similarly,
the salinity flux terms. This removes most of the
cross-slope diffusion, particularly in deep water where
the problem is most acute.

The new horizontal diffusion terms have been
inserted into the Blumberg-Mellor ocean model. Fig-
ure 2 is a sample, two-dimensional (x, ¢) calculation
mapped into (x, z) space after 60 days of model
integration. The physical setting is upwelling induced
by an applied, southward (negative y-direction) surface
wind stress of 0.6 dyn cm™2 Initially the velocity
field is null, T = T(z) and S = S(2); T is temperature
and S is salinity. Realistic bottom boundary layers
are obtained which, if detailed, show an Ekman
velocity spiral over a logarithmic near bottom layer.
Temperature and salinity in the boundary layers are
well mixed vertically.
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FIG. 2. The flow and mass fields after 60 days of integration. Initially the velocity field is null, 7
= T(z) and S = S(z). The upwelling flow is induced by a southward (negative ) surface wind stress of
0.6 dyn cm™2. Note the formation of a well-defined bottom boundary layer. Note also the entrainment

of upwelled water into the boundary layer.
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4. Conclusions

The conventional definition of horizontal diffusion
has been found to be physically incorrect near sloping
bottoms when the horizontal diffusivity is larger than
the vertical diffusivity. The conventional definition
leads to a net flux component normal to the bottom
which can be large, whereas fluctuating velocities and
length scales normal to the bottom cannot be large
and, in fact, must approach zero at the bottom.
When converted to a sigma coordinate system, the
conventional formulation behaved poorly in the
Blumberg-Mellor model on sloping bottoms; the
bottom boundary layer was unrecognizable relative
to known bottom layer properties.

A new formulation of the diffusive terms used in
numerical ocean models has been presented and
tested. This formulation not only provides for an
accurate computation of bottom boundary layers on
steep continental slopes but, it turns out, is also much
simpler mathematically and requires less computer
resources than the conventional formulation when
transformed to a sigma coordinate system.
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APPENDIX

Complete List of Diffusion Terms for the
Sigma Coordinate System

The complete equations for net heat diffusion are

1 1 dq,
Q—Ha*(qx) Ha,.,(Hy) H 30 (A1)
where
_ 3T 8T O\ Kufy o T
(9> 9y, 90) A”(ax* e ,O) 7 (0 0, )

(A2)
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which also applies to salinity or any other scalar. The
eddy diffusivity coefficients for heat are denoted by
Ay and K.

The corresponding equations for the momentum
component equations are

1 1
F,= I_Ia_* (HTxa) + = Ha * (HTya) (Tdd)

(A3)

where

BU oUu, av v, aUu, )
dx,  ox*’dx, oy*’

_Ku ( U, )
H > do
Here the subscript « is either x or y and U, is either

U, = Uor U, = V; Ay and K, are the eddy viscosity
coefficients.

(Txa s Tyas Tua)

(A4)
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